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On the applicability of isoconversion methods for
obtaining the activation energy of reactions within
a temperature-dependent equilibrium state

M. J. STARINK*
Centre de Thermodynamique et de Microcalorimétrie du CNRS, 13331 Marseille Cedex 3,
France

When the equilibrium state of a reaction depends on the temperature, isoconversion

methods for calculating activation energies are no longer valid. In these cases (apparent)

activation energies obtained from isoconversion methods vary with temperature and

fraction transformed, even if the true activation energy of the thermally activated process is

constant. Expressions that describe the influences of the reaction parameters and the

equilibrium state on the apparent activation energy are derived. A new method of

extrapolating apparent activation energies is introduced that allows the determination of the

true activation energy. Verification of this extrapolation method using precipitation in an

Al—1 at % Si alloy shows a good correspondence between experiment and calculations. For

the Al—1 at % Si alloy the apparent activation energy can deviate by 30% from the true

activation energy of the reaction.
1. Introduction
Thermally activated transformation processes in the
solid state can be investigated by isothermal experi-
ments or by non-isothermal experiments at a constant
heating rate. The latter is the case with, for instance,
differential scanning calorimetry (DSC). For isother-
mal experiments, activation energies are obtained
from the slope of a plot of ln (t

&
) versus 1/¹

*
, where t

&
is

the time to obtain a certain fraction transformed and
¹

*
is the temperature. For non-isothermal analysis at

a constant heating rate activation energies can be
obtained using, for instance, the Kissinger method or
the generalized Kissinger method [1—3]. (Kissinger
[2] originally derived his method for the state at
which the maximum reaction rate was achieved, i.e.
the peak in a DSC signal. It was later shown that this
method could be generalized to any fixed state of the
reaction, see e.g. [1]. The latter will be referred to as
the generalized Kissinger method). Both types of anal-
ysis are isoconversion methods: given two or more
time—temperature programmes only the times to reach
a certain fraction transformed are needed. These
isoconversion methods are subject to a number of
assumptions, most notably that the (metastable)
equilibrium state obtained after completion of the
transformation is independent of temperature. (The
term ‘‘equilibrium state’’ used here refers to the
compositions of the phases present in equilibrium
and the relative proportions of the phases present in
*Present address: Institute of Polymer Technology and Materials Engi

0022—2461 ( 1997 Chapman & Hall
equilibrium, i.e. ‘‘equilibrium state’’ refers to all the
parameters involved in defining the equilibrium.)
However, since in phase diagrams the boundaries be-
tween the phase fields are generally temperature de-
pendent, it is very rare that this assumption is met.
In principle this means that for most solid state reac-
tions isoconversion methods are not valid (see also
[4]). Nevertheless, isoconversion methods are often
used to derive apparent activation energies for reac-
tions in the solid state. [In this work we will use the
term activation energy, E

A
, to describe the temper-

ature dependence of the reaction rate, where E
A

occurs
in an exponential form of the sort exp (!E

A
/k

B
¹)

and k
B

is the Boltzmann constant. In all other cases
the term apparent activation energy, E

!11
, will be

used.]
In this work we will investigate to what extent

variation of the equilibrium state with temperature
influences the applicability of isoconversion methods
for evaluation of activation energies in non-isothermal
studies at a constant heating rate. It was shown pre-
viously [5] that the generalized Kissinger method and
a method developed by the present author are the
most accurate methods in this group of analysis
methods. After a brief review of activation energy
analysis methods in Section 2, in Section 3 the
influence of variation of the equilibrium state
on reaction kinetics is analysed on the basis of the-
oretical reaction models. In Section 4 the theoretical
neering, Loughborough University, Loughborough LE11 3TU, UK.
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*It should be noted that in the range 15(y(60 p
K
(y) differs from

p(y) by several per cent. Hence, strictly speaking, the accuracy of this
approximation is limited. However, it has been shown by the pres-
ent author [5] and by Criado and Ortega [10] that this shortcom-
ing has little effect on the final accuracy of the generalized Kissinger
method that can calculate activation energies to an accuracy of
about 0.2%.
expressions will be applied to precipitation reactions
in an Al—1 at%Si alloy as studied by DSC.

2. Theory and background
2.1. Activation energy analysis methods for

constant equilibrium state
In most theoretical analyses (see e.g. [1, 2, 3, 5]) of
transformation rates, the transformation rate during
a reaction is assumed to be the product of two func-
tions, one depending solely on the temperature,¹, and
the other depending solely on the fraction trans-
formed, a, i.e.

da

dt
"k (¹ ) f (a) (1)

where a is the fraction transformed, i.e.

a"x (t)/x
%/$

(2)

x(t) is the amount transformed, x
%/$

is the total
amount that can transform for a given time—temper-
ature program, i.e. is determined by the (meta-) stable
equilibrium state. For isothermal experiments x

%/$
can

depend on the temperature and, as the end temper-
ature of a reaction occurring during linear heating can
vary with the heating rate, b, x

%/$
can also vary with b.

Equation 1 implicity assumes that a stage of the trans-
formation can be unambiguously defined by the frac-
tion transformed, a. For k (¹ ) usually an Arrhenius
expression is chosen, i.e.

k(¹ )"k
0
exp (!E

A
/k

B
¹ ) (3)

where k
0

is a constant, E
A

is the activation energy of
the process, and k

B
is the Boltzmann constant.

Throughout this work it is assumed that E
A

is con-
stant, i.e. independent of temperature or amount
transformed. Hence, only transformations that
involve a single thermally activated process are
considered.

In the literature numerous types of expressions for
f (a) have been applied. In this work we will consider
one that is based on expressions first suggested by
S[ esták and Berggren [6] and that has been shown
[7, 8] to describe precipitation in Al-based alloys quite
well

f (a)"(1!a)p Cln
1

(1!a)D
q

(4)

It is noted that this choice for f (a) can take account of
both homogeneous nth-order reaction kinetics (q"0,
reaction order n"p) and Johnson—Mehl—Avrami
(JMA) reaction kinetics (p"1 and Avrami exponent
m"(1!q)~1).

From Equation 1—3 it follows directly that for
transformation studies performed at constant temper-
ature. ¹

i
, E

A
can be obtained from the well known

relation (i.e. see [1, 9])

ln t
&
"

E
A

k
B
¹

*

#C
1

(5)

where t
&
is the time needed to reach a certain fraction

transformed, f; and C
1

is a constant that depends on
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the reaction stage and on the kinetic model. Thus
E
A

can be obtained from two or more experiments at
different ¹. In transformation studies performed at
a constant heating rate, E

A
can be obtained by

a Kissinger-type isoconversion method or variants
thereof. Application of these types of analyses requires
data on the temperatures at a fixed state of trans-
formation, ¹

&
, as function of the heating rate, b.

Methods for determining E
A

can be derived as follows.
Equation 1 is integrated by separation of variables

P
a

0

da
f (a)

"

k
0
b P

T&

0

exp A!
E

A
k
B
¹B d¹

"

k
0
E
A

bk
B
P

=

y&

exp (!y)

y2
dy"

k
0
E
A

bk
B

p (y
&
) (6)

where y"E
A
/k

B
¹, y

&
"E

A
/k

B
¹

&
and ¹

&
is the tem-

perature at a fixed state of transformation. Various
ways of approximating the last integral in Equation
6 have been applied in the literature [1, 2, 3, 5]. Integ-
rating in parts and truncating the series by using
y
&
<1 results in the following approximation* for p(y)

[1, 5, 10]

p(y):p
K
(y)"

exp(!y)

y2
(7)

that leads to

ln
b

¹2
&

"!

E
A

k
B
¹

&

#C
2

(8)

where C
2

is a constant that depends on the reaction
stage and on the kinetic model. Thus, plots of
ln(¹ 2

&
/b) versus 1/¹

&
should result in straight lines, the

slope of the straight lines equalling E
A
/k

B
. This

method is usually referred to as the (generalized)
Kissinger method. Adoption of a specific reaction
model, as various authors have done in the past
[11—13], is not required. Alternative methods are
Ozawa’s method (see e.g. [3]) and Boswell’s method
[14]. However, in a previous publication [5] it was
shown that these two methods are much less accurate
than Kissinger’s method. It was shown that this is due
to approximations of p(y) that are less suitable than
Equation 7. In the same publication [5] a new method
was derived that is more accurate than Kissinger’s
method*. This method uses the following expressions

ln
b

¹1.8
&

"!A
E
A

k
B
¹

&

#C
3

(9)

with

A"1.0070!0.0012 E
A

(E
A

in eV) (10)



where C
3

is a constant that depends on the reaction
stage and on the kinetic model.

Using the same assumptions as used in the deriva-
tion of Equation 7, it has been shown [1] that the
maximum reaction rate, in good approximation,
occurred at a fixed stage of transformation. Hence,
special cases for Equation 7 and 9 are obtained by
substituting the temperature at maximum reaction
rate, ¹

.
, for ¹

&
.

The derivation of Equation 5, 8 and 9 depends on
the assumption that it is possible to define a state
variable that fully determines the fraction trans-
formed, a (see for instance [1]). However, as men-
tioned in the introduction, x

%/$
generally depends on

the temperature and this means that a not only de-
pends on the microstructural state (amount of new
phase formed) but also directly on the temperature.
Hence, a state variable that fully determines a does
not exist and application of Equations 5, 8 and 9 will
lead to errors in the determination of E

A
. These devi-

ations will be analysed in the next section.

2.2. Reaction kinetics for the case of a
T-dependent equilibrium state

We have concluded that when x
%/$

varies with temper-
ature it is not possible to unambiguously define a.
Therefore we will no longer use the fraction trans-
formed to define the stage of the reaction. Further, it
will not be possible to use the assumption that the
transformation rate during a reaction is the product of
two functions, one depending solely on the temper-
ature, ¹, and the other depending solely on a fraction
transformed, a. As a will now depend on both x(t) and
¹ the general form of the reaction rate equation
should instead read

dn

dt
"k(¹ ) f @(n, ¹ ) (11)

with

n"
x(t)

x
.!9

(12)

where x
.!9

is a constant representing the maximum
amount of material that can transform, i.e. the max-
imum value that x (¹, t) can attain for the range of
temperatures in which the transformation occurs. For
example, in a binary alloy A—B in which precipitation
of element B from the A-rich matrix phase occurs, x(t)
can be chosen as the amount of element A precipitated
in the course of the reaction, and x

.!9
is the final

amount that precipitates at the temperature at which
the solubility of B in the A-rich matrix phase is lowest.

For the kinetic model term f @ (n,¹ ) it is required
that in the case that x

%/$
is constant Equations 1 and

11 are equivalent. This can be achieved by defining
a generalized form of f @(n,¹ )

f @ (n,¹ )"

(1!a@)p1 (1!n)p2 Cln
1

(1!a@)D
q1

Cln
1

(1!n)D
q2

(13)
where p
1
, p

2
, q

1
, q

2
*0, p

1
#p

2
"p, q

1
#q

2
"q, and

a@"x(t)/x
%2

(¹ ) (14)

in which x
%2

(¹ ) is the maximum amount that can
transform at a given temperature, i.e.

x
%2

(¹ )" lim
tPR

x (t, ¹ )

The variation of the reaction rate with temperature
can be obtained from Equations 11—14 in the follow-
ing way. Assume that dn/d¹ can be approximated by
an expression in which the temperature dependence is
represented solely by an exponential term, while the
dependence on n is represented by a separate function
H(n)

A
dn
dtB

145 order

"A
2
k@(¹ )H(n) (15)

where k@(¹ )"k
0
exp (!E

!11
/k

B
) and A

2
is a con-

stant. In order for this approximation to be correct in
first-order around a certain characteristic transforma-
tion temperature, ¹

#)
, it is required that

A
dm
dtB145order

(¹
#)

)"
dn

dt
(¹

#)
) (16a)

and

d

d¹ A
dn
dtB145order

(¹
#)

)"
d

d¹

dn
dt

(¹
#)

) (16b)

Combination of Equation 11, 12, 15 and 16 results in

E
!11

"E
A
#k

B
¹2

#)

L f @
L¹

(¹
#)

)
1

f @(¹
#)

)
(17)

Hence, the apparent activation energy obtained from
an isoconversion method deviates from E

A
and the

deviation is given by the last term in Equation 17. For
evaluation of Equation 17 the correct definition of
¹

#)
needs to be obtained. For the case of isothermal

experiments, evidently ¹
#)
"¹

*
. In fact, for isothermal

studies the apparent activation energy obtained from
Equation 5 can be evaluated directly using Equation
5 and 11

E
!11

"k
B

Lln (dn/dt)~1

L(1/¹ )
(¹

*
)"!k

B

L ln k(¹ )

L (1/¹ )
(¹

*
)

!k
B

L ln f @ (n,¹ )

L (1/¹ )
(¹

*
) (18)

"E
A
#k

B
¹ 2

*

Lf @
L¹

(¹
*
)

1

f @ (¹
*
)

Comparison of Equations 17 and 18 confirms that for
isothermal studies ¹

#)
"¹

*
. For non-isothermal stud-

ies at constant heating rates, ¹
#)

must be a characteri-
stic temperature intermediate between the start of the
transformation and ¹

&
(¹

&
is the temperature at which

a certain fixed amount of matter, x
&
, has been trans-

formed). The difference between ¹
#)

and ¹
&
is expected

to depend on the parameters p
1
, p

2
, q

1
and q

2
. A

reasonable approximation for ¹
#)

would be the
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temperature at which half of x
&
has been transformed.

(This has been attempted and reasonable results were
obtained.) However, a better estimate of ¹

#)
can be

obtained by the following reasoning. Consider what
would happen in the limit of apparent activation ener-
gies being calculated at the largest value of n possible,
n
.!9

, given a certain heating rate. For this stage of the
transformation, a characteristic previous stage of the
transformation that to a high degree determined the
progress of the reaction is the stage at maximum
transformation rate, n

.53
, i.e.

C
n (¹

#)
)

n (¹
&
) D

%/$

"

n
.53

n
.!9

(19)

By assuming that n (¹
#)

)/n (‘¹
&
) is constant during the

reaction one finds

n (¹
#)

)"
n
.53

n
.!9

n (¹
&
) (20)

Thus Equation 20 defines ¹
#)

. For most solid state
reactions n

.53
/n

.!9
is about 0.5 to 0.7 [15].

Equation 18 shows that the apparent activation
energy depends on the reaction model through the
term 1/ f @  f /¹. To perform this derivation both f @
and x

%2
(¹ )/¹ need to be known. To obtain these

one could perform an isothermal experiment in the
temperature range of interest to fit p and q using
Equation 4 and subsequently perform more experi-
ments in that temperature range to obtain x

%2
(¹ ).

However, generally this long winded approach can be
avoided as in many cases a good estimate of x

%2
(¹ )

can be made on the basis of thermodynamic data. For
instance, for precipitation reactions x

%2
(¹ ) can gener-

ally be obtained in the following way. For these types
of reaction, x

%2
(¹ ) is determined by the solubility of

an alloying element in the matrix. The equilibrium
solubility, c

%2
(¹ ), of alloying elements in a matrix can

often be described using the regular solution model,
which results in

c
%2

(¹ )"c
=

expA!
*H

40-
k
B
¹ B (21)

where c
=

is a constant (the solubility extrapolated
to ¹"R) and *H

40-
is the enthalpy of solution of

the alloying element concerned in the matrix phase.
Equation 21 describes the solubility of elements in
several binary Al-based alloys accurately [16, 17]
and also holds for metastable solubilities in various
alloys [17, 18]. Using Equations 11—14 and 21
1/ f @ f @/¹ can be evaluated and the solution for
Equation 17 is

E
!11

"E
A
#k

B
¹2

#) C!p
1
#q

1Cln
1

(1!a@)D
~1

D
]

a@2
n

1

1!a@
c

#2
¹

(22)

It was found that for an Al—1 at%Si alloy the DSC
curves could be described well with q

1
"0. This

simplifies the evaluation of Equation 17 and after
6508
rearranging one finds

E
!11

"E
A
!*H

40-
p
1
n (¹

#)
)CC

x
.!9

c
%2

(¹
#)

)
!1D

]C1!
c
%2

(¹
#)

)

x
.!9

!n (¹
#)

)DD
~1

"E
A
!*H

40-
p
1
k
1
[c

%2
(¹

#)
) n(¹

#)
)x

.!9
] (23)

where

k
1
"n(¹

#)
)CC

x
.!9

c
%2

(¹
#)

)
!1D C1!

c
%2

(¹
#)

)

x
.!9

!n (¹
#)

)DD
~1

(24)

Hence, according to Equation 23 the true activation
energy can be obtained from an extrapolation of
E
!11

against k
1
.

It should be stressed that the above expressions for
E
!11

are only valid for stages of the reaction occurring
at fixed n and are not valid for fixed a or a@. It is
possible to reason in a qualitative manner what effect
a variation in x

%2
will have on apparent activation

energies obtained from stages at constant fractions of
transformed material, a, using a Kissinger-like analy-
sis. Providing there is a driving force for the trans-
formation in a certain temperature range, a stage that
occurs at a constant a will always be observed for any
finite heating rate. If during heating eventually a tem-
perature, ¹

.
, is reached at which x

%2
"0, it is clear

that ¹
&
will always be lower than ¹

.
(for precipitation

reactions in aluminium alloys ¹
.

is the solvus temper-
ature). Hence, on increasing the heating rate (consider
for instance continuously doubling the heating rate)
a ¹

&
will always be found, and ¹

&
will increase with

heating rate, but ¹
&

will always be lower than ¹
.
.

Thus, isoconversion methods will yield apparent ac-
tivation energies that increase with increasing ¹

&
, and,

when ¹
&
approaches ¹

.
, E

!11
will tend towards infin-

ity (this follows from Equations 8 or 9). With similar
reasoning it can be shown that also E

!11
calculated

from the stage at maximum reaction rate, i.e. the peak
of a DSC effect, will tend to infinity when the temper-
ature of this stage, ¹

1
, approaches ¹

.
.

3. Experimental procedure
DSC experiments were performed on a conventionally
cast Al—1 at% Si alloy. Chemical analysis showed the
following composition: 1.0 at% Si, 0.002 at %Cu,
0.003 at% Fe, balance Al. DSC specimens were ma-
chined from the homogenized castings, solution
treated for 2 h at 575 °C inside the DSC apparatus and
cooled inside the DSC apparatus. Subsequently, the
temperature was cycled between room temperature
and 575 °C. For the heating stage of the cycle the
heating rates were varied between 1.25 and
80 °C min~1. During the cooling, no heat was supplied
by the heating elements and the cooling was deter-
mined by the heat loss to the environment. The
cooling for each experiment was identical and nearly



exponential: the cooling rate on passing 490 °C was
22Kmin~1 and on passing 275 °C it was 6.5 °C min~1

(see also [18]). The total cooling time was 200 min.
The DSC apparatus used was a Dupont type 910;
experimental and calibration procedures are described
elsewhere [8, 19].

4. Results and discussion
It has been shown elsewhere [8] that Equations 11—14
combined with Equation 21 can describe the DSC
curves obtained from slowly cooled Al—1 at %Si very
well. In this previous work the parameters p"1.5 and
m"1.45 were used (for calculation of m in Al—Si see
also Refs [20, 21]), while the solubility of Si in Al was
obtained from the known phase diagram of Al—Si (see
e.g. [20]). The parameters k

0
, E

A
(0.97 eV) and p

2
(O0) were obtained by fitting of the experimental
curves. The curves thus obtained are presented in
Fig. 1. Experimental complications, like noise, base-
line stability, reproducibility of cooling before the
DSC experiment, limit the accuracy of E

!11
determina-

tions from two consecutive heating rates to about 5%.
This is not sufficiently accurate to evaluate Equation
23 critically. Hence the computer generated curves,
which are an accurate representation of experiments
on Al—1 at%Si will be used to check the validity of
the equations presented in the previous section.

To obtain activation energies for each heating rate,
the temperature at which a certain fixed amount trans-
formed is obtained is calculated. For this several
values of m between 0.01 and 0.64 were used. In addi-
tion also the temperature at the maximum trans-
formation rate was evaluated. The apparent activation
energies were obtained for two consecutive heating
rates b

1
and b

2
, using three different isoconversion

methods: the generalized Kissinger method. (Equation
8), the Ozawa method (see [3]) and the method
derived by the present author (Equation 9). As shown
before [5] the latter is the more accurate method, and
thus only this method is used in the present section.
Results obtained with the Kissinger analysis and the
Ozawa analysis add no new insights to the theory
presented in Section 2.2, but they do confirm that the
accuracy of the isoconversion methods decrease in the
following order: Equation 9, generalized Kissinger

Figure 1 Six computer generated DSC curves of precipitation in
Al—1 at% Si (heating rates 2.5, 5, 10, 20, 40 and 80 Kmin~1). They
fit closely to experimental curves (see [8]).
Figure 2 Apparent activation energies obtained from the method
developed by the present author (Equation 9) for the computer
generated curves (Fig. 1) for n"0.022 (s), 0.21 (d), 0.37 (h) and
0.64 (]) and for the maximum reaction rate (j). Heating rates used
range from 2.5 to 80 Kmin~1.

method (Equation 8), Ozawa method. These results
will be dealt with separately in the appendix.

In Fig. 2 the apparent activation energies obtained
with Equation 9 are plotted as a function of the
temperature¹

&
[¹

&
is taken to be the average of ¹

&
(b

1
)

and ¹
&
(b

2
)]. This figure shows that E

!11
decreases

with increasing ¹
&
and also decreases with increasing

n. For low ¹ and n, the values obtained appear in
good approximation to converge to the true activa-
tion energy 0.97 eV. Also in the same figure the appar-
ent activation energies obtained from the peak of the
DSC effect, i.e. the temperature at maximum reaction
rate, are plotted. As expected (see last paragraph of
Section 2.2) these E

!11
values increase with ¹

&
.

Next the applicability of the extrapolation method
presented in Equation 23 is tested. For this we first
obtain n

.53
/n

.!9
needed in Equation 20. It can be

expected that n
.53

/n
.!9

varies with heating rate and for
the lower range of heating rates (2.5—20 Kmin~1),
which are the most important ones in determining the
slope in subsequent Figs 3 and 4, n

.53
/n

.!9
increases

with heating rate from 0.56 to 0.6. To limit the com-
plexity of the calculations, n

.53
/n

.!9
is assumed to be

constant and approximated as 0.58. (Note that this
simplifying assumption will cause the plots in sub-
sequent Figs 3 and 6 to be slightly bent.)

In Fig. 3 the apparent activation energy obtained
with Equation 9 is plotted versus the extrapolation
function, k

1
. It is observed that, in correspondence

with Equation 23, the plot is in good approximation
a straight line. The value of E

A
resulting from the

extrapolation is 0.9709 eV, which is equal to the value
one finds in the range of ¹"500—560K for the case
c
%2
"constant. Hence, the small difference with the

true activation energy 0.97 eV is entirely due to the
extremely small inaccuracy (0.1%) that occurs when
Equation 9 is used (see also Ref. [5]). The slope of the
line in Fig. 3 in the range 0(k

1
(0.06 is

!0.79$0.02 eV. For Al—Si, *H
40-
"0.52 eV [8] and

thus according to Equation 23 the slope should equal
!p

1
]*H

40-
"!0.78 eV. Hence, also the slope is

predicted very accurately.
Finally, the method is applied to actual DSC data

obtained for the Al—1 at%Si alloy (for experimental
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Figure 3(a, b) Apparent activation energies obtained from Equa-
tion 9 for the computer generated curves (Fig. 1) versus the extra-
polation function, k

1
, for n"0.039 (s), 0.068 (#), 0.12 (]), 0.21

(d) and 0.37 (h). Heating rates used range from 2.5 to 80 Kmin~1.

Figure 4 Apparent activation energies obtained using Equation
9 for the Al—1 at%Si alloy versus extrapolation function, j

1
for

various n. Heating rates used were 20 and 40 Kmin~1.

DSC curves, see Ref. [8]). Results are presented
in Fig. 4, where E

!11
calculated with Equation 9 using

heating rates of 20 and 40 Kmin~1 is plotted as
a function of k

1
. In accordance with the theory

presented, the plot is a straight line. The ab-
scissa (0.93$0.02 eV) calculated from the fitted
straight line corresponds reasonably well with the true
activation energy of the reaction. It should be noted
that systematic errors in E

!11
calculations up to about

5% can be introduced due to instabilities of the DSC
baseline and other experimental inaccuracies, and
hence the observed deviation of the abscissa in Fig. 5
from the true activation energy may well be due to
this. In correspondence with this, at lower heating
rates the accuracy appears to degrade (results not
presented). As in Fig. 3 the slope of the fitted straight
6510
Figure 5 Apparent activation energies obtained from the Kissinger
method (Equation 8) for the computer generated curves for
n"0.022 (s), 0.21 (d), 0.37 (h) and 0.64 (]) and for the maximum
reaction rate (j). Heating rates used range from 2.5 to 80 Kmin~1.

line in Fig. 4 (0.72 eV) corresponds well with the pre-
dictions.

In concluding this section a few remarks on the
practical applicability of the theory presented in
the previous section are in order. The popularity of
isoconversion methods like the (generalized) Kissinger
method (Eq. 8), the Ozawa method, or the one
described by Equation 9 are largely due to the rela-
tive ease of their application. But if the equilibrium
state depends on the temperature, these isoconversion
methods are no longer valid and the more complex
Equation 17 describes the variation of E

!11
with

the temperature and stage of the reaction. It has
been shown that under certain conditions Equation
17 can be evaluated and Equations 22 and 23 can be
used as an extrapolation method to obtain the true
activation energy. This procedure is somewhat cum-
bersome, but Figs 2, 3 and 4 show that it is imperative
to check whether E

!11
varies with the extrapola-

tion function, k
1
; depending on the choice for

the amount transformed, apparent activation can de-
viate by up to 30% from the true activation energy.
If no correction was made according to the extrapola-
tion method (Equation 22) the activation energies
obtained by an isoconversion method would be too
low, and incorrect conclusions concerning the
thermally activated process could result. Hence, it is
advised that if for a thermally activated reaction x

%2
is found to vary with the heating rate or isothermal
ageing temperature, an analysis of the apparent
activation energies along the lines of the descrip-
tion in the previous section should always be
made.

5. Conclusions
When the equilibrium state of the reaction depends on
the temperature, apparent activation energies cal-
culated using isoconversion methods vary with tem-
perature and fraction transformed even though the
true activation energy of the thermally activated pro-
cess is constant. For DSC experiments on Al—1 at%Si
the apparent activation energy can deviate by up to
30% from the true activation energy of the reaction.
Expressions that describe the influence of the reaction



parameters (p
1
, p

2
, q

1
and q

2
) and the equilibrium

state on the apparent activation energy are derived.
A new method of extrapolating activation energies
is introduced that allows the determination of the
true activation energy for precipitation in alloys
with a known solubility. Verification of this extrapola-
tion method shows a good correspondence between
experiment and calculations. It is advised that if
for a thermally activated reaction the maximum
amount transformed is found to vary with the heating
rate or isothermal ageing temperature, always an
analysis of the apparent activation energies along
the lines of the description in this paper should be
made.

Appendix
Comparison with the Kissinger and Ozawa
methods
Fig. 5 is a plot similar to Fig. 2, but now the apparent
activation energies are obtained using the Kissinger
method and the generalized Kissinger method. The
general features are similar to the ones in Fig. 2, but
the calculated activation energies are on average
about 0.3% smaller. A similar plot to Figs 2 and 5 was
constructed for apparent activation energies cal-
culated with Ozawa’s method (results not presented).
It was observed that E

!11
obtained from Ozawa’s

method is generally larger than 0.97 eV. For this
method, in the range of heating rates studied, no
convergence to the true activation energy is
observed for low ¹ and n.

Fig. 6 is a plot similar to the extrapolation in Fig. 3,
but now the apparent activation energies are obtained
with the generalized Kissinger method. Also in Fig. 6
the plot is in good approximation a straight line. The
value of E

A
resulting from the extrapolation is about

0.967 eV, i.e. very close to the true activation energy.
The slope of the line in Fig. 6 in the range
0(k

1
(0.06 is identical to the one in Fig. 3. Hence,

when the Kissinger analysis is used, the theory in
Section 2.2 also predicts the slope of the line very
accurately.

The same extrapolation procedure applied for
E
!11

values calculated with Ozawa’s method does not
yield a straight line (results not presented). This is due
to the relatively large temperature-dependent devi-
ations from the real activation energy that result from
an Ozawa analysis (see [5, 22]). Most of the
E
!11

values for low k are around 1.015 eV. Hence, the
correspondence with the true value (0.97 eV) is an
order of magnitude worse than results obtained using
Kissinger’s method. Also other researchers [23, 24]
have pointed out that Kissinger’s method is generally
much more accurate than Ozawa’s method. This may
be surprising as some researchers (see e.g. [3]) have
stated that the approximation of p(y) used for the
derivation of Ozawa’s analysis is more accurate than
the one in Equation 7. However, it has been shown
elsewhere [5] that the approximation of p(y) used in the
derivation of the generalized Kissinger method is the
more appropriate one and that the method in Equation
9 is even more accurate than Kissinger’s method.
Figure 6 Apparent activation energies obtained from the Kissinger
method for the computer generated curves (Fig. 1) versus the extra-
polation function, k

1
, for n"0.039 (s), 0.068 (#), 0.12 (]), 0.21

(d) and 0.37 (h). Heating rates used range from 2.5 to 80 Kmin~1.
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